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Abstract Laplace’s equation is solved for the geometry
of a polarized disk, of radius R, inlaid in a coplanar
conductor and immersed in an aqueous electrolyte so-
lution of conductivity j. This geometry corresponds to a
corroding inclusion on the surface of a metal sheet when
the rate of corrosion is controlled by ohmic polarization.
When the corrosion potential is F, the corrosion current
density is found to have a minimum anodic value, equal
to jF/R, in the centre of the disk. Current densities at a
variety of sites on the disk-shaped anode and on the
annular cathode have been determined numerically.
Limiting behaviours have also been delineated. Equi-
potential surfaces are portrayed in a cross-sectional di-
agram, which also shows the routes taken by the
corrosion current. The behaviour of the current in spe-
cial regions – near the axis, near the three-phase junction
and on remote regions of the cathode – can be described
by simple formulas.

Keywords Corrosion Æ Disk Æ Inclusion Æ Laplace
equation

Introduction

A small region of atypical composition, known as an
‘‘inclusion’’, on the surface of an inhomogeneous alloy
can be the site of corrosion when the metal is in contact
with an aqueous solution. If the inclusion is more noble
than the surrounding metal, the latter will serve as the
anode in a corrosion cell. An example of this situation
arises when copper-rich inclusions are present on the
surface of structural aluminium alloys. The inclusion
then serves as a cathode at which an electroreduction,

typically of dissolved oxygen, occurs. The concomitant
anodic corrosion occurs over the much larger area of
the surrounding annulus and metal dissolution is
widespread. More dramatic in the corrosion effect is the
case in which the inclusion is less noble than the metal
surrounding it. Because the small anode is coupled to a
much larger cathode, the localized corrosion can be
intense and a pit may develop on the metal surface.
Though the treatment of a cathodic inclusion is strictly
analogous, we shall adopt signs in this article that
correspond to the inclusion serving as an anode. Fig-
ure 1a is a cross-sectional diagram of an anodic inclu-
sion, showing the paths taken by ions and electrons to
sustain the corrosion cell. Employing the scanning
vibrating electrode technique [1, 2, 3], He and co-
workers [4, 5] have mapped the ionic current densities in
the vicinity of a corroding inclusion by determining the
distribution of the electric field in the surrounding so-
lution. One object of the present study is to provide a
theoretical basis with which to compare such experi-
mental results. One such comparison has already been
published [6].

The model

In this article, a corrosion cell arising from a disk-shaped
anodic inclusion is modelled in the steady state. Thus, a
constant positive corrosion current, I, is postulated to
flow ionically from the disk to the surrounding metal
through the electrolyte solution and electronically from
the annulus to the disk through the metal. A major
objective of the present study is to calculate the magni-
tudes, j, of the corresponding current densities on the
metal surfaces; these will vary from point to point and
will be positive on the disk but negative on the sur-
rounding infinite annulus. The corrosion arises from a
chemical potential difference between the inclusion and
the alloy of typical composition. If xincl and xsurr rep-
resent the mole fractions of the base metal in the inclu-
sion and in the surrounding surface alloy, respectively,
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then the chemical potential difference will be parlayed
into an electrical potential difference of

U ¼ RT
neF

ln
xincl
xsurr

� �
ð1Þ

where other symbols have their standard electrochemical
significance. This formula assumes that the inclusion
and the bulk alloy behave as ideal solid solutions, an
assumption that might sometimes be grossly incorrect.
The potential F, which will be positive if the inclusion is
relatively base as assumed here, exists at the surface of
the inclusion, with respect to the surface of the sur-
rounding metal, to which a potential of zero is arbi-
trarily assigned.

The power FI created by the corrosion cell is dissi-
pated in overcoming three possible impediments to
current flow: activation polarization, concentration po-
larization and ohmic polarization. Activation polariza-
tion arises from any irreversibilities in the electrode
reactions. Concentration polarization has its origin in
nonuniformities in the composition of the solution
bathing the electrode sites. Ohmic polarization arises
from the need to force ionic current through the aqueous
solution, a resistive medium. It will be assumed that
activation polarization is absent. Because the aqueous
solution is taken to have a uniform and constant com-
position, concentration polarization will also be dis-
counted. Thus, the model takes cognizance only of
ohmic polarization arising from the uniform finite con-
ductivity, j, of the aqueous medium. Also ignored are
any impediments to current flow that might arise from
films on the surface of the metal or in the electron
pathway. Because the many effects that are being ig-
nored may often be comparable with, or overwhelm,
ohmic polarization, the results of this study should be
regarded as a prediction of the maximum corrosion
current densities that can exist.

Cell geometry

The geometry that will be assumed is of an inclusion
forming a circular disk-shaped anode on the surface of
the metal sample, the cathode being the infinite coplanar
annulus surrounding the disk. The aqueous solution is
semiinfinite in extent, occupying all the space corre-
sponding to 0 £ z<¥ in the cylindrical coordinate sys-
tem depicted in Fig. 1b. The anode is defined
geometrically by z=0, r<R and the cathode by z=0,
r>R. The hoop z=0, r=R represents a three-phase
junction at which the anode, cathode and solution all
meet; it can be confidently anticipated that the corrosion
current will have an infinite density there.

As prescribed by this model, the problem devolves
into first finding the potential /{r,z} at all points in the
space occupied by the aqueous solution, by solving
Laplace’s equation

r2/ ¼ @2/
@r2

þ 1

r
@/
@r

þ @2/
@z2

¼ 0 ð2Þ

subject to the boundary conditions

/fr; 0g ¼ U r < R ð3Þ

and

/fr; 0g ¼ 0 r > R: ð4Þ
Once the solution to that problem is found, the local

current density, j{z,r}, can then be determined from
Ohm’s law in the form j=–j(¶//¶n), where n is the
normal to the equipotential surface at the point in
question. On both the anode and the cathode, this
normal coincides with the z-coordinate and therefore

j r; 0ð Þ ¼ �j
@/
@z

ð5Þ

permits the current density to be calculated. We expect
j(r,0) to be positive at r=0, to increase dramatically as r
approaches R, to suffer an infinite discontinuity at r=R,
to be negative for r>R and to approach zero as rfi¥. It
will transpire that this expectation is realized, as a glance
at Fig. 3 will confirm.

Because the flux lines will be normal to the z=0
plane, for r both smaller than and larger than R, a
mathematically equivalent problem is the following. An
infinitely thin circular disk of radius R is immersed in an
infinite medium of uniform conductivity j, as depicted
in Fig. 1c. Solve Laplace’s equation if one face of the
disk is held at a potential F and the other at potential
–F. Considerations of symmetry then ensure that con-
dition (4) will be automatically satisfied. It is this
equivalent construct, that of a bipolar disk, that we shall
have in mind in modelling the corrosion process.

Modelling in transformed coordinates

The cylindrical coordinate system, though simple and
straightforward, is less felicitous for the present problem

Fig. 1 a The routes taken by current, ions and electrons in the
anodic corrosion of an inclusion. b The cylindrical coordinates
initially employed. c The mathematically equivalent geometry of a
dipolar disk
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than another orthogonal set: the oblate spheroidal co-
ordinate system. The latter employs two dimensionless
coordinates1 g and n that are linked to the cylindrical
coordinates through the equations [7]

r ¼ a 1þ n2
� �1=2

1� g2
� �1=2 ð6Þ

and

z ¼ ang ð7Þ

where a is a reference length, that we set equal to the
disk radius R. The third coordinate is of no concern in
the present axisymmetric problem. Notice that when
z=0, either n=0 and g ¼ R2 � r2

� �1=2
=R, corresponding

to a surface of the disk or g=0 and n ¼ r2 � R2
� �1=2

=R,
corresponding to the coplanar extension of the disk.
Both coordinates are zero at the three-phase junction.

Figure 2 shows how the g and n coordinates index
space in the geometry of interest. A surface of constant n
is an oblate spheroid that obeys the equation,

r2

1þ n2
þ z2

n2
¼ R2 ð8Þ

being generated by revolving an ellipse of semimajor axis
R 1þ n2
� �

1=2 and semiminor axis Rn, centred at the
z=r=0 origin, about the r=0 axis. Values of n are
limited to the range n‡0. A surface of constant g is
generally spindle shaped, obeys the equation

r2

1� g2
� z2

g2
¼ R2 ð9Þ

and is generated by revolving a hyperbola, centred at the

origin, about the r=0 axis. The apex of the hyperbola

lies on the disk at r ¼ Rð1� g2Þ1=2 and its asymptotes

have a slope dz=dr ¼ 	g=ð1� g2Þ1=2. Values of the g
coordinate are confined to the range –1 £ g £ 1 and we
assign g a sign to match that of z. On the symmetry axis
r=0, the spindle degenerates to a rod with g taking the
value 1 above the disk and changing discontinuously to
–1 below the disk. Typical spindles, with 0<g<1 above
the disk, suffer a similar discontinuity. The surface cor-
responding to g=0 is the entire z=0 plane, except for
the disk.

We now need to restate the mathematical problem in
the new coordinate system and for a bipolar disk elec-
trode. In oblate spheroidal coordinates, Laplace’s
equation takes the form

@

@n
1þ n2
� � @/

@n

� �
þ @

@g
1� g2
� � @/

@g

� �
¼ 0 ð10Þ

A solution to this equation is sought subject to the
following conditions

/ ¼ U; n ¼ 0; 0 < g < 1 ð11Þ

/ ¼ �U; n ¼ 0;�1 < g < 0 ð12Þ

and

/ ¼ 0; g ¼ 0; 0 < n < 1 ð13Þ

That

/ ! 0; n ! 1;�1 � g � 1 ð14Þ

is evident from physical considerations.

The solution

Let it be postulated that, in oblate spheroidal coordi-
nates, the Laplace equation is separable; that is, we as-
sume [8] that

/ðn; gÞ ¼ F ðnÞGðgÞ ð15Þ

Subject to this assumption, Eq. (10) may be manip-
ulated into

1

F
1þ n2
� � d2F

dn2
þ 2n

dF
dn

� �
¼ �1

G
1� g2
� � d2G

dg2
� 2g

dG
dg

� �
ð16Þ

Because the left- and right-hand sides of Eq. (16) are
independent of g and n, respectively, each must equal the
same constant, say k, that we take to be positive. Then

1� g2
� � d2G

dg2
� 2g

dG
dg

þ kG ¼ 0 ð17Þ

follows from the right-hand side of Eq. (16).
The solution [9] of Eq. (17) is the simple expressions

Gfgg ¼ APmfgg þ A0Qmfgg ð18Þ

where Pmfgg and Qmfgg are Legendre functions of the
first and second kinds (see Chaps. 21, 59 in [10]), their
degree, m, being related to the separation constant

1Alternatively, our n is often denoted sinh{n}, our g being denoted
sin{g}.

Fig. 2 The oblate spheroidal coordinate system used in the
modelling of the corrosion
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by m ¼ ðk þ 1=4Þ1=2 � 1=2. The multipliers A and A¢
are arbitrary constants which, since their values will
reflect m, we now denote Am and A0

m. However, inas-
much as the Legendre functions of the second kind
adopt infinite values at unity argument, Qmf1g ¼ 1
irrespective of m, the participation of this function
would prevent the satisfying of condition (14) unless
A0

m ¼ 0, which assignment we therefore invoke. More-
over, the symmetry of our problem demands that / be
an odd function of g and this property is exhibited by
Legendre functions of the first kind only if m, which
we henceforth replace by n, is an odd positive or an
even negative integer. However, because P–n–

1{g}=Pn{g}, it will suffice to consider only n=1,3,5,....
Because any odd integer will serve, the most general
solution is

G gf g ¼
X1
n¼1;3

AnPn gf g ð19Þ

The allowed Pn{g} functions are simple polynomials;
for example, P1{g}=g and P3{g}=(5g3–3g)/2 and all
vanish (see Table 1) at g=0, ensuring that the boundary
condition (13) is met.

With the separation constant k now replaced by its
equivalent, n(n+1), the left-hand side of Eq. (16) leads
to

1þ n2
� � d2F

dn2
þ 2n

dF
dn

� n nþ 1ð ÞF ¼ 0 ð20Þ

the form of which differs from Eq. (17) only in signs.
The solution is analogous to Eq. (18), being in terms of
Pn{ } and Qn{ } functions, but this time of imaginary
argument [11]

F nf g ¼ BnQn inf g þ B0
nPn inf g ð21Þ

For odd n, all Pn{in} functions are imaginary. More-
over, for odd n>1, all Pn{in} functions approach infinity
as nfi¥, which would violate condition (14) unless all
Bn¢=0. Therefore, we set each B¢ multiplier to zero. The
Qn{in} functions do not have these problems. Reassur-
ingly, all Qn{in} functions are real when n is an odd pos-

itive integer; for example, Q1{in}=n arccot{n}–1
and Q3{in}=–[(5n3+3n)/2] arccot{n}+[(15n2+4)/6].
Moreover, such functions satisfy condition (14).
Accordingly, we write

F nf g ¼
X1
n¼1;3

BnQn inf g ð22Þ

as the n-dependent portion of the solution.
By setting Cn=AnBn/F, we see, on combining

Eqs. (15), (19) and (22), that

/ n; gf g ¼ U
X1
n¼1;3

CnQn inf gPn gf g ð23Þ

It remains to identify the Cn multipliers. This is ac-
complished by satisfying the boundary conditions that
apply on the disk, where n=0. Table 1 contains an ex-
pression for Qn{i0}when n is positive and odd. Substi-
tution of this into Eq. (23) shows the potential on the
disk to be

/ 0; gf g ¼ U
X1
n¼1;3

�ð Þ nþ1ð Þ=2 n�1ð Þ!!CnPn gf g
n!!

ð24Þ

We use ( )!! to denote the semifactorial function (see
Sect. 2:13 in [10]) defined, for odd n, by (n–1)!!=(2)(4)
(6)(...)(n–1) and n!!=(3)(5)(7)(...)(n), it being understood
that (–1)!!=0!!=1!!=1.

Note from Eqs. (11) and (12) that, viewed as a
function of g, / displays a discontinuity at the n=0 disk,
changing as a step function from –F to F as g crosses
zero. Just as such discontinuous functions can be rep-
resented as infinite Fourier series of sinusoids, so they
can alternatively be represented as series of Legendre
functions. It is demonstrated in Appendix A that the
infinite series

X1
n¼1;3

�ð Þ n�1ð Þ=2 2nþ 1ð Þ n� 2ð Þ!!Pn gf g
nþ 1ð Þ!! ð25Þ

has the property of representing a step function,
equalling –1 for –1<g<0 and 1 for 0<g<1. On

Table 1 Values of pertinent functions at special arguments when
n=1,3,5,.... Primes denote differentiation with respect to x or y.
Where a general result is not available, a recursion formula is
presented, together with the expressions needed to initiate the

recursion. Some values reflect choices made in cutting the complex
plane; our values relate to a single cut along the real axis from –¥
to 1

Function Value at x=0 or y=0 Values at x=±1 or y=±1

Pn–1{x} in–1(n–2)!!/(n–1)!! 1
Pn{x} 0 ±1
Pn¢{x} in+1n!!/(n–1)!! n(n+1)/2
Q0{iy} �ip=2 �ip=4
Q1{iy} –1 (p/4)–1
Qn–1{iy} in(n–2)!!p/2(n–1)!! Use (n–1)Qn–1{±i}=±(2n–3)iQn–2{±i}–(n–2)Qn–3{±i}
Qn{iy} in+1(n–1)!!/n!! Use nQn{±i}=±(2n–1)iQn–1{±i}–(n–1)Qn–2{±i}
Q0¢{iy} i i/2
Q1¢{iy} ±p/2 ±(p–2)/4
Qn¢{iy} in–2n!!p/2(n–1)!! Use (n–1)Qn¢{±i}=±(2n–1)iQn–1¢{±i}–nQn–2¢{±i}

175



equating each coefficient of Pn(g) in series (25) with
that in the summation in Eq. (24), one discovers that
Cn=–(2n+1)(n–2)!!n!!/(n–1)!!(n+1)!!. Substitution of
this result into Eq. (23) generates

/ n; gf g ¼ �U
X1
n¼1;3

2nþ 1ð Þ n� 2ð Þ!!n!!Qn inf gPn gf g
n� 1ð Þ!! nþ 1ð Þ!! ð26Þ

Thus Laplace’s equation has been solved. An alternative
solution has recently been published [6].

The potential distribution in solution

In general, we have not been able to sum the expression
in Eq. (26) to create an analytical expression for the
potential; however, using the software facilities of
Mathematica [12], we were able to calculate2 numerical
values of /{n,g}. The method adopted to find pairs of
(n,g) coordinates, and thence (r,z) pairs, corresponding
to a chosen value of the //F ratio, is described in
Appendix D. The results of such a numerical exercise are
presented as the equipotential surfaces shown in cross
section in Fig. 4.

On the symmetry axis, r=0 or g=1, Eq. (26) loses its
Pn{g} term because Legendre functions of the first kind
invariably equal unity when their arguments are unity;
therefore

/ n; 1f g
U

¼ �
X1
n¼1;3

2nþ 1ð Þ n� 2ð Þ!!n!!Qn inf g
n� 1ð Þ!! nþ 1ð Þ!! ð27Þ

In Appendix B we demonstrate that this series has a
simple algebraic sum, namely

/ n; 1ð Þ
U

¼ 1� n

1þ n2
� �1=2 ð28Þ

In terms of cylindrical coordinates, this means

/ 0; zð Þ ¼ U 1� z

R2 þ z2ð Þ1=2

 !
ð29Þ

which shows, for example, that the axial potential falls
to about one-tenth of its value at the electrode surface,
when z is close to the disk diameter 2R. Evidently, the
electrical perturbation of the solution, caused by the
corrosion potential, is closely confined to the region of
the inclusion. At larger distances, Eq. (29) is well ap-
proximated by /=FR2/2z2, showing the inverse-square
dependence that would be expected.

Figure 4 also shows the flux lines, the routes followed
by the ions that sustain the corrosion current. These
were constructed from the same data sets used to draw

the equipotential surfaces, following the method de-
scribed in Appendix D.

The current density on the electrode surfaces

Because the (n,g) system is orthogonal, a normal, of
length n, to the electrode interface follows a line of
constant g at the upper surface of the bipolar disk. Ac-
cordingly the current density at any point on the anode
is given by

j 0; gð Þ ¼ �j
@/
@n


 �
n¼0

¼�j
@/=@n
@n=@n

� �
n¼0

¼�j
@/=@nð Þn¼0

Rg

ð30Þ

where j is the conductivity of the aqueous medium. In
the final step (¶n/¶n), the so-called scale factor hn of the
oblate spheroidal coordinate system, generally equal [13]
to a[(n2+g2)/(1+n2)]1/2, was replaced in Eq. (30) by its
value at n=0. Substitution of the n-derivative of
Eq. (26) into Eq. (30) yields

j 0; gf g ¼ jU
Rg

X1
n¼1;3

i 2nþ 1ð Þ n� 2ð Þ!!n!! Q0
n inf g

� 
n¼0
Pn gf g

n� 1ð Þ!! nþ 1ð Þ!!

ð31Þ

where the prime on the Qn{ } function represents dif-
ferentiation with respect to the n coordinate.

On the z=0 plane outside r=R, the roles of n and g
are reversed. The normals there follow lines of constant
n and accordingly the current density is

j n; 0ð Þ ¼ �j
@/
@n


 �
g¼0

¼ �j
@/=@g
@n=@g


 �
g¼0

¼ j
@/=@gð Þg¼0

Rn

ð32Þ

In the final step the scale factor hg ¼ ð@n=@gÞ, simply
equal to –an when g=0, was inserted. On evaluating the
remaining derivative via Eq. (26), the result

j n; 0f g ¼ �jU
Rn

X1
n¼1;3

2nþ 1ð Þ n� 2ð Þ!!n!!Qn inf g P 0
n gf g

� 
g¼0

n� 1ð Þ!! nþ 1ð Þ!!

ð33Þ

is obtained.
Derivatives of Legendre functions may be expressed

as associated Legendre functions or alternatively, and
more usefully in the present exercise, in terms of
Legendre functions of changed and unchanged degree.
Thus (Chap. 59 in [10])

P 0
n gf g ¼ �P 1ð Þ

n gf g
1� g2ð Þ1=2

¼ n Pn�1 gf g � gPn gf g½ �
1� g2

ð34Þ

and

2In version 4.0, neither Mathematica’s "LegendreP" function nor
its equivalent "Hypergeometric2F1" function returns correct values
invariably.
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Q0
n inf g ¼ Q lð Þ

n inf g
1þ n2
� �1=2 ¼ n Qn�1 inf g � inQn inf g½ �

1þ n2
ð35Þ

From these relationships, or from Table 1, we can
now obtain expressions for ½P 0

nfgg�g¼0 and ½Q0
nfing�n¼0 to

insert into Eqs. (33) and (31), respectively. The first in-
sertion leads to the formula

j n;0f g ¼ �jU
Rn

X1
n¼1;3

�ð Þ nþ1ð Þ=2 2nþ 1ð Þ n� 2ð Þ!! n!!½ �2Qn inf g
n� 1ð Þ!!½ �2 nþ 1ð Þ!!

ð36Þ

for the current density on the annulus. Similarly, the
second insertion yields

j 0; gf g ¼ pjU
2Rg

X1
n¼1;3

�ð Þ n�1ð Þ=2 2nþ 1ð Þ n� 2ð Þ!! n!!½ �2Pn gf g
n� 1ð Þ!!½ �2 nþ 1ð Þ!!

ð37Þ

for the current densities on the disk.
Of course, the current density at the centre of the disk

is available by differentiation of Eq. (28). One finds

@/
@z


 �
r¼0

¼ �UR2

R2 þ z2ð Þ3=2
ð38Þ

and therefore

j r ¼ 0; z ¼ 0ð Þ ¼ �j
@/
@z


 �
r¼z¼0

¼ jU
R

ð39Þ

This remarkably simple result for the current density
at the centre of an anodic disk of radius R, when the
cathode is the coplanar annulus, is to be compared with
the value 2jF/pR for the current density at the centre of
a similar disk embedded in an infinite coplanar insulator,
when the cathode is a remote hemisphere [14]. We were
surprised that, considering the much shorter electrical
path in the present geometry, the central current density
is enhanced by a mere 57%.

Sadly, the centre of the disk, n=0, g=1, is the only
electrode site at which we have been able to determine

the current density analytically; however, numerical
values of the Legendre functions Pn{g} and Qn{in} are
available from the Mathematica software [12]. Numbers
from this source were used in a program exploiting the
twin Eqs (36) and (37) to calculate the current density
values listed in Table 2 and graphed in Fig. 3. No
problems were encountered in implementing Eq. (36);
however, even with modern aids, we experienced great
difficulty in generating precise current densities via
Eq. (37). The reason for this, and the method that we
adopted to circumvent it, are explained in Appendix C.

Close to the axis, the current density is almost uni-
form but, as expected, the current density on the disk
soon increases from jF/R ever more steeply as one
moves outwards from the centre, approaching an infinite
positive value as the disk edge is neared. Of course, the
infinite current density changes sign as r=R is crossed
and then falls precipitously in magnitude, declining
towards zero as rfi¥. The falloff is, in fact, as the inverse
cube of the distance from disk’s centre, being given by

j n ! 1; g ¼ 0ð Þ ¼ �jU

2Rn3
� �jUR2

2r3
ð40Þ

when the radial distance r is large.

Table 2 Normalized current densities, j{r,0}, at selected points on the anodic disk (r<R) and on the cathodic annulus (r>R)

r/R n g Rj{n,g)/jF r/R n g Rj{n,g)/jF

0 0 1 1 1 0 0 ±¥
0.1 0 0.994987 1.008 1.001 0.044733 0 –316.9
0.2 0 0.9798 1.031 1.01 0.141774 0 –30.77
0.3 0 0.953939 1.074 1.05 0.320156 0 –5.583
0.4 0 0.916515 1.141 1.1 0.458258 0 –2.525
0.5 0 0.866025 1.246 1.2 0.663325 0 –1.065
0.6 0 0.8 1.411 1.5 1.118034 0 –0.2847
0.7 0 0.714143 1.692 2 1.732051 0 –0.08622
0.8 0 0.6 2.258 3 2.828427 0 –0.02114
0.9 0 0.43589 3.926 5 4.898979 0 –0.004188
0.95 0 0.31226 7.2 10 9.949874 0 –0.0005057
0.99 0 0.141067 32.9 20 19.9745 0 –6.268·10–5
0.999 0 0.04471 319.7 50 49.99 0 –4.002·10–6

Fig. 3 The current density at the metal surface, plotted as a
function of the radial distance from the disk’s centre
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Behaviour close to the hoop

The three phases – anode, solution and cathode – meet
at the hoop where n=g=0. Intuitively, we expect
flux lines to be semicircular in this region, such that
(R–r)2+z2 is a constant for any particular flux line.
Moreover, since such semicircles are parallel, one would
expect that an ion following any one particular flux line
would encounter a constant potential gradient. This
argument leads to the conjecture that the equation

/ r ! R; z! 0ð Þ ¼ / n ! 0; g ! 0ð Þ

¼ 2U
p

arcsin
g

n2 þ g2
� �1=2

0
@

1
A ð41Þ

should describe the potential close to the hoop. Nu-
merical studies confirm that Eq. (41) is, indeed, valid. A
consequence of this limiting equation is that equipo-
tentials radiate linearly from the hoop, as Figs. 4 and 5
show. In cylindrical coordinates, the slopes of these
limiting straight lines depend on the potential according
to the formula

z
r � R

¼ tan
p/
U


 �
ð42Þ

For example z=r–R when /=F/4 and z=R–r when
/=3F/4; in each of these cases the equipotential surface is
inclined at 45
 to the metal surface as it reaches the hoop.

Consider an annulus of the anodic surface occupying
q<r<q+dr, where q is very close to, but slightly less
than, R. The total area of this annulus will be 2pqdr. The
ionic current leaving this annulus will flow along a
semicircular current path of length p(R–q) and arrive at
a complementary cathodic annulus occupying 2R–
q+dr<r<2R–q, also of width dr, outside the hoop as
illustrated in Fig. 5. The current density will have a
constant magnitude equal to the product of the con-
ductivity and the potential gradient,

j close to hoopf g ¼ �jd/

d R� rð Þ2þz2
h i1=2 ¼ j/

p R� qð Þ ð43Þ

at any point in the (R–r)2+z2=(R–q)2 semicircle.
Equation (43) gives the magnitude of the current density;
its sign will be positive at r=q and negative at r=2R–q.
This result predicts that (R–r)j/jF will approach 1/p as
(R–r)fi0 and –1/p as (r–R)fi0. These predictions have
been confirmed by numerical study of Eqs. (37) and
(36), respectively. Indeed, since 1/(0.001)p equals 318.3,
the symmetrical approaches are evident in Table 2.

Total corrosion current

At the outset of this research, we were uncertain as to
whether the total current would turn out to be finite or
infinite. The latter proves to be the case, as is easily
demonstrated. As in the previous section, let q denote a
value of r, smaller than R but sufficiently close that
Eq. (43) can be taken to describe the current density.
Not only does this confirm that the anodic current
density at r=R is infinite, but it also throws light on the
size of the total corrosion current. Thus, we can evaluate
the total anodic current as

I ¼ 2p
ZR
0

rjf0; rÞdr ¼ 2p
Zq

0

rjf0; rÞdr þ 2jU
ZR
q

r
R� r

dr

ð44Þ

The second integral encounters a logarithmic infinity
at its upper limit. Therefore, since both components of
the final expression in Eq. (44) are positive, I must itself
be positively infinite on the disk. And, of course, the
annulus current must be negatively infinite.

Because all the current that originates on the anode
arrives at the cathode, there is a one-to-one correspon-
dence between any point on the disc and some point on

Fig. 4 Equipotential surfaces and flux lines (arrowed) shown in
cross section

Fig. 5 Near the three-phase junction, r=R, z=0, the flux lines are
semicircular and the equipotential surfaces radiate from the hoop.
A typical element through which ion transport occurs in the
vicinity of the junction is shown
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the cathode. Let rc denote the radius of a circle on the
cathode that is the sink of the current that has its source
in the r=ra circle on the anode. Our earlier ‘‘semicircle’’
argument shows that, close to the hoop, the correspon-
dence between rc and ra is

rc þ ra ¼ 2R close to the hoop: ð45Þ

It is of interest to determine the equivalent relation
for the current that originates close to the r=0 axis of
the anodic disk and that terminates on the distant
reaches of the annulus. If rc and ra are a pair of radii that
are complementary in this sense, it follows that the total
currents from sources in 0<r<ra must be equal in
magnitude to those ending at sinks in rc<r<¥. Ac-
cordingly

2p
Zra
0

rjdr ¼ �2p
Z1
rc

rjdr ð46Þ

Close to the axis, we know from Eq. (39) and Fig. 3
that the current density is very close to jF/R, while it is
known from Eq. (40) that the current density far out on
the annulus is –jFR2/r3. Insertion of these expressions
for j into the corresponding integrals in equality (46)
leads to the interesting resulting complementarity rela-
tionship

r2arc ¼ 2R3 remote from the hoop ð47Þ

after the integration is carried out. This relationship
shows, for example, that current from r=R/100 termi-
nates at the very large distance r=20,000R.

Note added in proof

Since the submission of this article, Harold Levine
(Stanford University, Calif.; private communication)
has derived much more succinct formulas, namely

jfr<R; 0g ¼ 2jUREfr=Rg
pðR2 � r2Þ

and

j r > R; 0f g ¼ 2jUr
p

K R=rf g
r2

� E R=rf g
r2 � R2

� �

as replacements for Eqs. (37) and (36), respectively.
Here K{ } and E{ } are complete elliptic integrals
(Chap. 61 in [10]). The normalized current densities in
Table 2 prove to be in full agreement with correspond-
ing values derived from these formulas.
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Appendix A

Legendre polynomials are orthogonal on the interval –
1 £ g £ 1 with a weight function of unity. This implies
that many functions f{g} may be expressed on this in-
terval by

f gf g ¼
X1
m¼0;1

cmPm gf g ðA1Þ

cm ¼ 1

Xm

Z1
�1

f tf gPm tf gdt ðA2Þ

and

Xm ¼
Z1
�1

P 2
m tf gdt ¼ 2

2mþ 1
ðA3Þ

For the function of interest, in which f{g} adopts the
value –1 during –1<g<0 and 1 during 0<g<1,
Eq. (A2) becomes

cm ¼ mþ 1=2ð Þ �
Z0
�1

Pm tf gdt þ
Z1
0

Pm tf gdt

2
4

3
5 ðA4Þ

after Eq. (A3) is incorporated. For even degree m,
Legendre polynomials are even functions and therefore
their integrals cancel in Eq. (A4). Only the values
m=n=1,3,5,... then need consideration, for which de-
grees the polynomials are odd, so that the integrals
contribute equally and therefore

cn ¼ 2nþ 1ð Þ
Z1
0

Pn tf gdt ¼ �ð Þ n�1ð Þ=2 2nþ 1ð Þ n� 2ð Þ!!
nþ 1ð Þ!!

ðA5Þ

the integral being a standard form (Eq. 21:10:7 in [10]).
Insertion of this result into Eq. (A1) validates expression
(25).

Appendix B

By writing out the first few terms of the series on the
right-hand side of Eq. (27), it may be shown that

/ n; 1f g
U

¼� 3

2
Q1 inf g þ 21

16
Q3 inf g þ 165

128
Q5 inf g

�

þ 2625

2048
Q7 inf g þ 41895

32768
Q9 inf g þ � � �

�
ðB1Þ

Legendre functions of the second kind, of odd degree
and imaginary argument, may be expanded in inverse
powers of their argument; thus (Chap. 12 in [8])
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Qn inf g¼1

2

�4

n2


 � nþ1ð Þ=2X1
j¼0;1

nþ jð Þ! nþ2jð Þ!
j! 2nþ2jþ1ð Þ!

�1

n2


 �j
ðB2Þ

If sufficient terms in the n=1,3,5,7 and 9 versions of
this formula are evaluated and substituted into expres-
sion (B1), one discovers, after considerable labour, that

/ n; 1ð Þ
U

¼ 1

2n2
� 3

8n4
þ 5

16n6
� 35

128n8
þ 63

256n10
� � � � ðB3Þ

The coefficients in this series may be recognized as
binomial coefficients, leading to formula (28). This is an
inelegant proof, but copious numerical evidence has also
established the identity of the right-hand sides of
Eqs. (27) and (28).

Appendix C

For odd n, the ratio (n–1)!!/n!! approaches (p/2n)1/2 as
nfi¥ (Eq. 2:13:6 in [10]). It follows that

2nþ 1ð Þ n� 2ð Þ!! n!!½ �2

n� 1ð Þ!!½ �2 nþ 1ð Þ!!
! 32n

p3


 �1=2

ðC1Þ

in the same limit. Moreover [15]

Pn coshf g! 2csch
np


 �1=2

cos nþ 1=2ð Þh� p=4f gas n!1

ðC2Þ

From these two limiting forms, one can demonstrate
that the nth summand in the expression, Eq. (37), that
we use to calculate Rj{0,g}/jF, acquires the limit

�ð Þ n�1ð Þ=2 p=2gð Þ 2nþ 1ð Þ n� 2ð Þ!! n!!½ �2Pn gf g
n� 1ð Þ!!½ �2 nþ 1ð Þ!!

! 4

p 1� g2ð Þ1=4g
�ð Þ n�1ð Þ=2cos nh þ wf g ðC3Þ

as n tends to infinity. Here h=arccos{g}, while w tem-
porarily abbreviates (2h–p)/4. Evident in the limiting
expression (Eq. C3) is the sinusoidal variation of the
summand’s value with n. This prevents convergence of
the sum, impeding the straightforward evaluation of the
expression in Eq. (37).

Let M be an integer large enough that only a small
error is introduced on replacing all the summands in
Eq. (37) beyond n=4M–3 by the right-hand side of
Eq. (C3), rather than the existing left-hand side. Then

Rj 0; gf g
jU

¼ p
2g

X4M�3

n¼1;3

�ð Þ n�1ð Þ=2 2nþ1ð Þ n�2ð Þ!! n!!½ �2Pn gf g
n�1ð Þ!!½ �2 nþ1ð Þ!!

þ 4

p 1�g2ð Þ1=4g

X
m

�ð Þ2m�1cos 4Mþ4m�1ð Þhþwf g

ðC4Þ

where the second summation index, which temporarily
runs over m=0,1/2,1,...,¥, is defined by M+m=(n+1)/
4. Our attention in the remainder of this paragraph will
focus on this second summation in Eq. (C4), that we
denote by S. First the summands in S can be paired and
combined

S ¼
P1

m¼0; 1=2

�ð Þ2m�1cos 4Mþ4m�1ð Þhþwf g

¼ �2sin hf g
Pu
m¼0;1

sin 4 Mþmð Þhþwf g
ðC5Þ

Notice that we have replaced the upper infinite limit by
u; our interest is in the behaviour of S as ufi¥. Next, we
replace the m summation by use of the Euler–Maclaurin
formula (Eq. 4:14:1 in [10])

Xu
m¼0;1

f mð Þ¼�f uð Þ� f 0ð Þ
2

þ
X1
p¼0;2

Bp
p!

dp�1f
dlp�1


 �
l¼u

� dp�1f

dlp�1


 �
l¼0

" #
ðC6Þ

where l is a continuous variable replacing the discrete m.
Here Bp denotes the pth Bernoulli number (B0=1,
B2=1/6, B4=–1/30, B6=1/42, ...). Note that the leading
term in the p summation is the definite integral of f{l}.
In our case f{l}=sin{4(M+l)h+w} whence, for even p,
dp–1f/dlp–1=–(–)p/2(4h)p–1cos{4(M+l)h+w}. However
(Eq. 34:6:2 in [10])

cot 2hf g¼ 2
X1
p¼0;2

�ð Þp=2Bp
p!

4hð Þp�1 ðC7Þ

so it follows from Eq. (C6) thatXu
m¼0;1

sin 4 Mþmð Þhþwf g

¼�sin 4 Mþuð Þtaþwf g� sin 4Mtaþwf g
2

� cot 2taf g cos 4 Mþuð Þtaþwf g� cos 4Mtaþwf g½ �
2

ðC8Þ

With the help of trigonometric identities, Eqs. (C5) and
(C8) may now be combined into

S¼sec hf g cos 4 Mþuð Þhþw�2hf g�cos 4Mhþw�2hf g½ �
2

ðC9Þ
We see that as ufi1 S is itself oscillatory; however,

its value at u=1 can be associated with the mean of its
oscillations. That is, we set

S ¼ � sec hf g cos 4Mh þ w � 2hf g
2

¼ � cos 4M � 3=2ð Þ arccos gf g � p=4f g
2g

ðC10Þ
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On replacement of the second summation in Eq. (C4)
by the expression for S given in Eq. (C10), one finds

Rj 0; gf g
jU

¼ p
2g

X4M�3

n¼1;3

�ð Þ n�1ð Þ=2 2nþ 1ð Þ n� 2ð Þ!! n!!½ �2Pn gf g
n� 1ð Þ!!½ �2 nþ 1ð Þ!!

� 2

p 1� g2ð Þ1=4g2 cos
�

4M � 3=2
�
arccos

�
g

� �
� p=4g
ðC11Þ

This is the complicated expression that was used to
generate the j{0,g} values listed in Table 2. Successively
larger values of M were employed until further increase
no longer produced a significant effect.

Appendix D

To delineate an equipotential line we started at (0,z0),
where z0 is the value given by Eq. (28) for the chosen //
F ratio, (//F)s. To find the next point, a program was
written to search along a small circle, centred at (0,z0)
and of radius L equal to R/50 until a point (r1,z1) was
found that gave a //F ratio acceptably close to (//F)s.
Then another search was made along another small
circle of the same radius, but now centred at (r1,z1). And
so on until the hoop was reached. The search for point
(rn+1,zn+1) was carried out via an angle h that was ini-
tially set to h0 ¼ arctan zn � zn�1ð Þ= rn � rn�1ð Þf g. The
coordinate pair (rn+Lcosh, zn+Lsinh) was then con-
verted to (n, g) coordinates and used in Eq. (26) to
generate a trial value (//F)0 of the normalized potential.
Next h was incremented to h1 by an arbitrary addition of
1
, and the procedure was repeated, generating a chan-
ged value (//F)1 of the ratio. For the third guess, the
angle was adjusted via the m=1 case of the linear in-
terpolation/extrapolation formula

hmþ1 ¼
hm�1 /=Uð Þm� /=Uð Þs

� 
þ hm /=Uð Þs� /=Uð Þm�1

� 
/=Uð Þm� /=Uð Þm�1

:

ðD1Þ

This formula often produced a satisfactory result, (//
F)2. If not, h was changed from h2 to h3, where h3 was
generated by setting m=2 in formula (D1). This process
was continued until (//F) was equal to (//F)s to within
a factor of 10–7. In this way, a file of values (0,z0), (r1,z1),
(r2,z2),... was constructed for each chosen value of the //
F ratio. These files were used to draw the equipotential
lines shown in Fig. 4 by linearly connecting adjacent
points. The same files were also used to construct flux
lines.

The construction of the flux lines requires linking
the equipotential contours by lines that are orthogonal

to those contours. The process involves a stepwise lo-
cation of the crossing points of one flux line with each
of the equipotential contours. We shall use subscript a
to denote the contour at which the crossing point is
known; b will denote the contour at which the crossing
point is sought. Thus ra; zað Þ denotes the intersection
point of a particular flux line with the a contour.
Similarly ðdz=drÞa represents the contour’s slope at that
point, being the negative reciprocal of the slope of the
flux line itself. Now, for it to be possible for a circular
arc to be drawn orthogonally between points ra; zað Þ
and rb; zb

� �
, one on each of two distinct lines, then it is

necessary3 that

hab ¼ dz
dr

� �
bþ

dz
dr

� �
a

h i
rb � ra
� �2� zb � za

� �2h i
þ2 rb � ra
� �

zb � za
� �

dz
dr

� �
b

dz
dr

� �
a�1

h i
ðD2Þ

be zero, as can readily be demonstrated. This property
was used to locate the rb; zb

� �
point, from known val-

ues of ra; za and ðdz=drÞa. To start the process of lo-
cating the crossing points for each flux line in Fig. 4,
we selected a value of ra on the equipotential contour
at which (//F)=1, i.e. the surface z=0 of the anode,
so that za and ðdz=drÞa are both zero. We then exam-
ined the next equipotential contour file (that for which
//F=0.9) and calculated the value of hab for the pairs
(r1,z1), (r2,z2), ..., (rn,zn), ..., (rN,zN), by setting rb ¼ rn,
zb ¼ zn and ðdz=drÞb ¼ znþ1 � zn�1ð Þ= rnþ1 � rn�1ð Þ for
n=1, 2, 3, ..., N. This survey was halted as soon as the
sign of hab changed4, say from –QN–1 to +QN, both Qs
being positive. This change of sign signifies that the
rb; zb
� �

intersection point lies between (rN–1, zN–1) and
(rN, zN). Accurate values of rb and zb were then found
from the interpolation formulas

rb ¼ QNrN�1 þ QN�1rN
QN�1 þ QN

and zb ¼ QNzN�1 þ QN�1zN
QN�1 þ QN

ðD3Þ

with ðdz=drÞb being calculated by a similar interpola-
tion. These three quantities then become the a data
from which the b values on the next equipotential
contour are calculated.

The flux line itself was drawn through consecutive
pairs of points, i.e. from ra; zað Þ to rb; zb

� �
, by using the

specially created cubic spline

3But not sufficient. There may occasionally be points that give a
zero value to hab but which do not lie on the sought flux line.
Extemporary measures must be taken to exclude these.
4The sign change is easily recognized by the product of two con-
secutive values of hab being negative. Rarely, this will occur without
a zero crossing if hab encounters an infinity. Such a false root is
easily distinguished from a true root by the large magnitude of the
negative product.
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z ¼
r � rb
� �2za þ r � rað Þ2zb

rb � ra
� �2

þ
r � rað Þ r � rb

� �2
rb � ra
� �3 rb � ra

� �
z0a þ 2za

� 

þ
r � rað Þ2 r � rb

� �
rb � ra
� �3 rb � ra

� �
z0b þ 2zb

h i
ðD4Þ

Here z0a and z0b represent the slopes of the flux lines at
points ra; zað Þ and rb; zb

� �
; for example, z0a ¼

�1=ðdz=drÞa, where ðdz=drÞa is the slope of the equipo-
tential contour at point ra; zað Þ.
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